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Graphical Models

Representation

Inference

Learning

Compact and expressive
Global independence

Exponential in treewidth of

graph

Extremely difficult because:
| earning requires inference
*Approximate inference is
unreliable

*Hidden variables =

no global optimum



Sum-Product Networks

Representation
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Inference

Learning

Compact and expressive
Local independence

Linear in number of edges

Much easier because exact
Inference
Only weight learning to date



This Paper:
SPN Structure Learning

hl_. * General-purpose SPN structure learning

e Discrete or continuous

* Learns layers of hidden variables
* Fully leverages context-specific independence

e Simple and intuitive

* 1-3 orders of magnitude faster, and

more accurate at query time
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Compactly Representable
Probability Distributions

Graphical Sum-Product
Models Networks

Existing
Tractable

Models



Compactly Representable
Probability Distributions

Graphical Sum-Product
Models Networks

/ /[E )
XI> Exact inference in time |
\ \ linear in network size



A Univariate Distribution
s an SPN.



A Univariate Distribution
s an SPN.
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A Univariate Distribution
s an SPN.
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A Product of SPNs over
Disjoint Variables
s an SPN.
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A Weighted Sum of SPNs
over the Same Variables
s an SPN.
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A Weighted Sum of SPNs
over the Same Variables
s an SPN.

Sums out a
mixture variable
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All Marginals Are
Computable in Linear Time
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All Marginals Are
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All Marginals Are
Computable in Linear Time

P(X=0) =
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All MAP States Are
Computable in Linear Time
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All MAP States Are
Computable in Linear Time
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Products = Features
Sums = Clusterings
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What Does an‘SPN Mean!?

Products = Features

Sums = Clusterings
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What Does an SPN Mean?
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Special Cases

Hierarchical mixture models

Thin junction trees (e.g.: hidden Markov
models)

Non-recursive probabilistic context-free
grammars

Etc.



Weight Learning

® Generative (Poon & Domingos, UAI 2011)
UAI 2011 Best Paper Award

® Discriminative (Gens & Domingos, NIPS 2012)
NIPS 2012 Outstanding Student Paper Award



Weight Learning

® Generative (Poon & Domingos, UAI 2011)
UAI 2011 Best Paper Award

® Discriminative (Gens & Domingos, NIPS 2012)
NIPS 2012 Outstanding Student Paper Award

Key limitation: Requires a structure
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LearnSPN

Recursive algorithm

Instances

Variables



LearnSPN

Recursive algorithm

Instances

Variables



LearnSPN

Return:

/ Ill Multinomial

\ (Gaussian
X1
Poisson

Instances
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Variable Splits (%)

Pairwise independence test
0-value (validation set)




Variable Splits (%)

Pairwise independence test
0-value (validation set)




Variable Splits (%)

Pairwise independence test
0-value (validation set)/(\

Recurse Recurse




Variable Splits (%)

Pairwise independence test
0-value (validation set)
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Instance Clustering (+)

X1 Xp X3 X4 X5 X¢ X7
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Instance Clustering (+)

e(Online hard EM

e Naive Bayes mixture model

oCluster penalty (validation set)  P(V) = ZP (Ci>HP (X51C3)
e carned weights are the mixture priors !
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LearnSPN Locally
Optimizes Likelihood



LearnSPN Locally
Optimizes Likelihood

No loss of likelihood
if truly iIndependent




LearnSPN Locally
Optimizes Likelihood

No loss of likelihood
if truly iIndependent

Naive Bayes likelihood LearnSPN likelihood

Recurse Recurse
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Experiments

20 Datasets Representation | Learning | Inference
collaborative filtering _—
click-through logs SPN LearnSPN Exact
nucleic acid sequences _
Bayesian . Gibbs
WinMine
Network Loopy BP
Gibbs
Instances Della Pietra
2k-388k Markov Loopy BP
Network Gibbs
Variables L1
16-1556 Loopy BP

Total: 1680 Experiments




Learning Results

B SPN Wins (p=0.05)
SPN Ties
SPN Losses

WinMine Della Pietra L1
Log-likelihood Pseudo Log-likelihood
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B SPN Wins (p=0.05)
@ SPN Ties
SPN Losses
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Inference

P( Query | Evidence )
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P( Query
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Inference Accuracy

“EachMovie”, 500 variables

0

0.1 SPN
-0.2 i

Conditional 3|

Log-Likelihood | 1 |(WinMine
-05 ¢
L1
-0.6 1
07 Della Pietra
0.8 1 1 1
10% 20% 30% 40% 50%

Fraction of Query Variables



Inference Time
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Inference Time
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Inference Time
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Loopy Belief Propagation

Single variable marginals

~ WinMine
Della Pietra > X 20 Datasets X
L1

— —J

= 600 Experiments

10 Variable
proportions

SPNs had higher conditional marginal
log-likelihood on 78% of experiments

(95% higher CLL vs. Gibbs)




Experiment Conclusions

® SPN learning accuracy is comparable

® SPN exact inference is 1-3 orders of magnitude
faster, and more accurate

® [nference does not involve tuning settings or
diagnosing convergence

® |nference takes a predictable amount of time

® Can now apply SPNs to many domains



Future VWork

® Other SPN structure and weight learning
algorithms

® Approximating intractable distributions
with SPNs

® Parallelizing SPN learning and inference

Code and supplemental results available at
spn.cs.washington.edu/learnspn/




