Learning the Structure of

Sum-Product Networks

Robert Gens
Pedro Domingos

« of W,
5 a%bp
°

W

Sa 1S
UNIVERSITY of 3B g
WASHINGTON %

|
RXX XXX AN EEREEES 20 i_____i
X
Q)
X
10x ©
X
N e e eeeqes
. S X LL
Q PLL
A \ CLL
' ‘ CMLL

Motivation SPN Structure Experiments
Review Learning

Graphical Models

Representation

Inference

Learning

Compact and expressive
Global independence

Exponential in treewidth of

graph

Extremely difficult because:
| earning requires inference
*Approximate inference is
unreliable

*Hidden variables =

no global optimum

Sum-Product Networks

Representation

0

X X X X X X X X X X X X

NN NI ARDDE

%) (X) (%) (%) (X) (X) (X) (X) (X) (%) (X) (%) (%) (X) (X) (X) (X) (X) (X) (X

Inference

Learning

Compact and expressive
Local independence

Linear in number of edges

Much easier because exact
Inference
Only weight learning to date

This Paper:
SPN Structure Learning

hl_. * General-purpose SPN structure learning

e Discrete or continuous

* Learns layers of hidden variables
* Fully leverages context-specific independence

e Simple and intuitive

* 1-3 orders of magnitude faster, and

more accurate at query time

N/

N/
7\

X X2

‘v

XX

00000000

XXX

X2

N \/

Motivation

SPN
Review

Structure
Learning

EEEE

L--J

20 [

10x®

LL
PLL
CLL

CMLL

Experiments

Compactly Representable
Probability Distributions

Graphical Sum-Product
Models Networks

Existing
Tractable

Models

Compactly Representable
Probability Distributions

Graphical Sum-Product
Models Networks

/ /[E)
XI> Exact inference in time |
\ \ linear in network size

A Univariate Distribution
s an SPN.

A Univariate Distribution
s an SPN.

| F AN

Multinomial Gaussian Poisson

A Univariate Distribution
s an SPN.

Ll

A Product of SPNs over
Disjoint Variables
s an SPN.

A Product of SPNs over
Disjoint Variables
s an SPN.

L] [l

A Weighted Sum of SPNs
over the Same Variables
s an SPN.

B

W4 Wo

(X (X
Ll ale]| fenl T

A Weighted Sum of SPNs
over the Same Variables
s an SPN.

Sums out a
mixture variable
W1 W5

(X (X
Ll ale]| fenl T

N><T =
RN

/ 5 \ Aﬂ«&‘
o XY

v
=

All Marginals Are
Computable in Linear Time

All Marginals Are
Computable in Linear Time

All Marginals Are
Computable in Linear Time

B

W4 Wo

(X (X
Ll ale]| fenl T

All Marginals Are
Computable in Linear Time

B

0.4 0.6

(X (X
Ll ale]| fenl T

All Marginals Are

Computable in Linear Time
P(X=0)?

B

0.4 0.6

(X (X
Ll ale]| fenl T

All Marginals Are

Computable in Linear Time
P(X=0)?

B

0.4 0.6

(X (X
Ll ale]| fenl T

Evidence Evidence

All Marginals Are

Computable in Linear Time
P(X=0)?

Evidence Evidence

All Marginals Are

Computable in Linear Time
P(X=0)?

Evidence Marginalize Evidence Marginalize

All Marginals Are

Computable in Linear Time
P(X=0)?

Evidence Marginalize Evidence Marginalize

All Marginals Are
Computable in Linear Time

P(X=0) =

B

0.4 0.6
(X

X Y X Y
| F]| el s

Evidence Marginalize Evidence Marginalize

All MAP States Are
Computable in Linear Time

B

0.4 0.6

(X (X
Ll ale]| fenl T

All MAP States Are
Computable in Linear Time

0.4 0.6

(X (X
Ll ale]| fenl T

All MAP States Are
Computable in Linear Time

All MAP States Are
Computable in Linear Time

Evidence Evidence

All MAP States Are
Computable in Linear Time

Evidence Mode Evidence Mode

All MAP States Are
Computable in Linear Time

Evidence Mode Evidence Mode

All MAP States Are
Computable in Linear Time

y,h

0.4 0.6
X
06

| B Il T

Evidence Mode Evidence Mode

All MAP States Are
Computable in Linear Time

y,h

0.4 0.6
X
06

| B Il T

Evidence Mode Evidence

All MAP States Are
Computable in Linear Time

y,h

0.4 0.6
X
06

| B Il T

Evidence Mode Evidence

All MAP States Are
Computable in Linear Time

T

What Does an SPN Mean?
s

Products = Features : ;
Sums = Clusterings 9%

Products = Features
Sums = Clusterings

What Does an SPN Mean!

""—E'

3

~"’*-r

B - Greenery

e 4%
F o
-h—q ’! M

=

\é‘\{.

T -

_;\-

=
-

ot
- 3

>

4

-

®
A4
1

-~

v &

Truck “ Sign

——

%
g
b
i

Flowers

What Does an‘SPN Mean!?

Products = Features

Sums = Clusterings

e

Greenery

Calf

Cow

Bull

———

v &

Truck “ Sign

Person patting

Flowers

Person on bike

What Does an SPN Mean?

Products = Features
Sums = Clusterings

———

» "/2;;

& § | Truck “ Sign

¢ \;/{ Flowers

Person on bike

Person patting

What Does an SPN Mean?

&’!

».(‘;‘

Products = Features
Sums = Clusterings

"/4_
L

———

? "Faz;

Truck “ Sign

Flowers

Person on bike

What Does an SPN Mean?

..' g '!
Products = Features < z-__.
Sums = Clusterings

; Scene
'~ |decomposition

——

- G B ¢

Hay e(. 1
Greenery ;:T A Truck“&gn =R

‘ Mixture ‘ | ’ "/4
/@\
| Person on bike
Part
decomposition
Pooling ‘

Special Cases

Hierarchical mixture models

Thin junction trees (e.g.: hidden Markov
models)

Non-recursive probabilistic context-free
grammars

Etc.

Weight Learning

® Generative (Poon & Domingos, UAI 2011)
UAI 2011 Best Paper Award

® Discriminative (Gens & Domingos, NIPS 2012)
NIPS 2012 Outstanding Student Paper Award

Weight Learning

® Generative (Poon & Domingos, UAI 2011)
UAI 2011 Best Paper Award

® Discriminative (Gens & Domingos, NIPS 2012)
NIPS 2012 Outstanding Student Paper Award

Key limitation: Requires a structure

N/

N/
7\

X X2

‘v

XX

00000000

XXX

X2

N \/

Motivation

SPN
Review

Structure
Learning

EEEE

L--J

20 [

10x®

LL
PLL
CLL

CMLL

Experiments

LearnSPN

Recursive algorithm

Instances

Variables

LearnSPN

Recursive algorithm

Instances

Variables

LearnSPN

Return:

/ Ill Multinomial

\ (Gaussian
X1
Poisson

Instances

saoue]suj

Variables

Establish

approximate

independence

Instances

Variables

Establish 3
approximate O
independence %

el

2

k=

Variables

Return:

Recurse Recurse Recurse

Establish 8 If no
approximate & independence,
independence % cluster similar
-IJ; instances
=
Variables
Return:

Recurse Recurse Recurse

Establish 3 If no
approximate O independence,
independence % cluster similar
-IJ; iInstances
k=
Variables
Return: Return:

Recurse Recurse Recurse

Recurse Recurse

Recurse

If no detectable
dependencies

Instances

Variables
Return:

R.. R.. R.. R.. R.. Fully factorized
distribution

If no detectable
dependencies

Instances

Variables
Return:

Fully factorized

@ @ @ @ E distribution

If never finds
independence

Instances

Variables

Kernel density estimate

If never finds
independence

Instances

Variables

Kernel density estimate

Establish 3 If no
approximate O independence,
independence % cluster similar
-IJ; iInstances
k=
Variables
Return: Return:

Recurse Recurse Recurse

Recurse Recurse

Recurse

Instances

Variables

If no

independence,

cluster similar
Instances

Return: (4-

Recurse Recurse

Recurse

Establish 3 If no
approximate O independence,
independence % cluster similar
-IJ; iInstances
k=
Variables
Return: Return:

Recurse Recurse Recurse

Recurse Recurse

Recurse

Establish 3
approximate O
iIndependence %

el

N

=

Variables

Return:

Recurse Recurse Recurse Recurse Recurse

saoue]su|

Variables

saoue]su|

Variables

saoue]su|

Variables

saoue]su|

Variables

Instances

X,

&

R...

OO00

OOO00

Variables

High treewidth

Instances

Variables

High treewidth

Instances

Variables

High treewidth

Tainng LearnSPN

set
: 7p) If no
Establish @ .
. O independence,
approximate ..
. - cluster similar
independence © -
e Instances
N
=
Return: - Return:
Variables AT\,
1 3
Recurse Recurse Recurse If |V|=1, g
Return: .
~ j\)

Variable Splits (%)

Pairwise independence test
0-value (validation set)

Variable Splits (%)

Pairwise independence test
0-value (validation set)

Variable Splits (%)

Pairwise independence test
0-value (validation set)/(\

Recurse Recurse

Variable Splits (%)

Pairwise independence test
0-value (validation set)

Instance Clustering (+)

Instance Clustering (+)

X1 Xy X3 X4 X5 Xg X7

Instance Clustering (+)

X1 Xp X3 X4 X5 X¢ X7

Instance Clustering (+)

Instance Clustering (+)

e(Online hard EM

e Naive Bayes mixture model

oCluster penalty (validation set) P(V) = ZP (Ci>HP (X51C3)
e carned weights are the mixture priors !

oe(On

oNai

o(Clu

®| carned weights a

Instance Clustering ()

ine hard EM
ve Bayes mixtu
ster penalty (va

e model
dation set) P(V) = ZP (Ci)HP(Xj\Cq:)

e the mixture priors

—
m, - mdbd |
m3
)
s
m

oe(On

oNai

o(Clu

®| carned weights a

Instance Clustering ()

ine hard EM
ve Bayes mixtu
ster penalty (va

e model
dation set) P(V) = ZP (Ci)HP(Xj\Cq:)

e the mixture priors

—
m, - mdbd |
m3
)
s
m

oe(On

oNai

o(Clu

Instance Clustering ()

ine hard EM
ve Bayes mixtu
ster penalty (va

®| carned weights a

Recurse

‘e model

dation set) P(V) = ZP (Ci)HP(Xj\Cz-)
‘e the mixture priors ’

Recurse Recurse

oe(On

oNai

o(Clu

Instance Clustering ()

ine hard EM
ve Bayes mixtu
ster penalty (va

®| carned weights a

Recurse

‘e model

dation set) P(V) = ZP (Ci)HP(Xj\Cz-)
‘e the mixture priors ’

2 2
7 3 7
7

Recurse Recurse

LearnSPN Locally
Optimizes Likelihood

LearnSPN Locally
Optimizes Likelihood

No loss of likelihood
if truly iIndependent

LearnSPN Locally
Optimizes Likelihood

No loss of likelihood
if truly iIndependent

Naive Bayes likelihood LearnSPN likelihood

Recurse Recurse

N/

N/
7\

X X2

‘v

XX

00000000

XXX

X2

N \/

Motivation

SPN
Review

Structure
Learning

EEEE

L--J

20 [

10x®

LL
PLL
CLL

CMLL

Experiments

Experiments

20 Datasets Representation | Learning | Inference
collaborative filtering _—
click-through logs SPN LearnSPN Exact
nucleic acid sequences _
Bayesian . Gibbs
WinMine
Network Loopy BP
Gibbs
Instances Della Pietra
2k-388k Markov Loopy BP
Network Gibbs
Variables L1
16-1556 Loopy BP

Total: 1680 Experiments

Learning Results

B SPN Wins (p=0.05)
SPN Ties
SPN Losses

WinMine Della Pietra L1
Log-likelihood Pseudo Log-likelihood

Learning Results

B SPN Wins (p=0.05)
@ SPN Ties
SPN Losses
6
0
WinMine Della Pietra

Log-likelihood Pseudo Log—hkehhood

Inference

Inference

P(Query | Evidence)

P(Query

Q

Inference

Evidence)

E

10%

30%

20%

30%

30%

30%

40%

30%

50%

30%

30%

0%

30%

10%

30%

20%

30%

40%

30%

50%

For each proportion,
generate 1000
gueries from test set

P(Query

E

10%

30%

20%

30%

30%

30%

40%

30%

Inference

Evidence)

[WinMine
Della Pietra > X 20 Datasets X

50%

30%

30%

0%

30%

10%

30%

20%

30%

40%

30%

50%

-

X«

10 Variable
proportions

L1 B

('\

Gibbs
Loopy BP

> = 1200 Experiments

— J

(In addition to 400 for SPNs)

For each proportion,
generate 1000
gueries from test set

Inference Accuracy

“EachMovie”, 500 variables

0

0.1 SPN
-0.2 i

Conditional 3|

Log-Likelihood | 1 |(WinMine
-05 ¢
L1
-0.6 1
07 Della Pietra
0.8 1 1 1
10% 20% 30% 40% 50%

Fraction of Query Variables

Inference Time

Gibbs
ms/query

WinMine
O Della Pietra
|1

PN ms/query

Inference Time

10000
1000
Gibbs 100 | .
WinMine
ms/query O Della Pietra

o 1
|

0 L
0.1 | 10 100 1000 10000

SPN ms/query

10000

1000

Gibbs 100
ms/query

|10

0.1

Inference Time
+
+ + 4+
+ +
+ —|- WinMine
O Della Pietra
v i‘*i Ve L1
oi | 10 100 1000 10000

SPN ms/query

Inference Time

10000
Q
1000 + 2
QFLH
ms/query Q Sgb ' O Della Pietra
. %% B
Q
Q +
I
0.1
0.1 I |10 100 1000 10000

SPN ms/query

Inference Time

10000
O
1000 +$ Q q}
Gibbs 100 g - S
ms/query | @ O Della Pietra
. %% B
Q
@ +
|
o1 L~
0.1 | |0 100 1000 10000

SPN ms/query

Inference Time

10000
Q
1000 +|Q
IR
GIbDs 100 N6 h WinMine
ms/query Q G @ O Della Pietra
10 %% Q 3
| ® T | SPNis 1-3 orders
of magnitude faster
o1 L~
0.1 I |0 100 1000 10000

SPN ms/query

Loopy Belief Propagation

Single variable marginals

~ WinMine
Della Pietra > X 20 Datasets X
L1

— —J

= 600 Experiments

10 Variable
proportions

SPNs had higher conditional marginal
log-likelihood on 78% of experiments

(95% higher CLL vs. Gibbs)

Experiment Conclusions

® SPN learning accuracy is comparable

® SPN exact inference is 1-3 orders of magnitude
faster, and more accurate

® [nference does not involve tuning settings or
diagnosing convergence

® |nference takes a predictable amount of time

® Can now apply SPNs to many domains

Future VWork

® Other SPN structure and weight learning
algorithms

® Approximating intractable distributions
with SPNs

® Parallelizing SPN learning and inference

Code and supplemental results available at
spn.cs.washington.edu/learnspn/

