
Deep Symmetry Networks

Robert Gens Pedro Domingos
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350, U.S.A.

{rcg,pedrod}@cs.washington.edu

Abstract

The chief difficulty in object recognition is that objects’ classes are obscured by
a large number of extraneous sources of variability, such as pose and part de-
formation. These sources of variation can be represented by symmetry groups,
sets of composable transformations that preserve object identity. Convolutional
neural networks (convnets) achieve a degree of translational invariance by com-
puting feature maps over the translation group, but cannot handle other groups.
As a result, these groups’ effects have to be approximated by small translations,
which often requires augmenting datasets and leads to high sample complexity.
In this paper, we introduce deep symmetry networks (symnets), a generalization
of convnets that forms feature maps over arbitrary symmetry groups. Symnets
use kernel-based interpolation to tractably tie parameters and pool over symmetry
spaces of any dimension. Like convnets, they are trained with backpropagation.
The composition of feature transformations through the layers of a symnet pro-
vides a new approach to deep learning. Experiments on NORB and MNIST-rot
show that symnets over the affine group greatly reduce sample complexity relative
to convnets by better capturing the symmetries in the data.

1 Introduction
Object recognition is a central problem in vision. What makes it challenging are all the nuisance
factors such as pose, lighting, part deformation, and occlusion. It has been shown that if we could
remove these factors, recognition would be much easier [2, 17]. Convolutional neural networks
(convnets), the current state-of-the-art method for object recognition, capture only one type of in-
variance (translation); the rest have to be approximated via it and standard features. In practice,
the best networks require enormous datasets which are further expanded by affine transformations
[7, 13] yet are sensitive to imperceptible image perturbations [23]. We propose deep symmetry net-
works, a generalization of convnets based on symmetry group theory [20] that makes it possible to
capture a broad variety of invariances, and correspondingly improves generalization.

A symmetry group is a set of transformations that preserve the identity of an object and obey the
group axioms. Most of the visual nuisance factors are symmetry groups themselves, and by incor-
porating them into our model we are able to reduce the sample complexity of learning from data
transformed by these groups. Deep symmetry networks (symnets) form feature maps over any sym-
metry group, rather than just the translation group. A feature map in a deep symmetry network
is defined analogously to convnets as a filter that is applied at all points in the symmetry space.
Each layer in our general architecture is constructed by applying every symmetry in the group to
the input, computing features on the transformed input, and pooling over neighborhoods. The entire
architecture is then trained by backpropagation. In this paper, we instantiate the architecture with the
affine group, resulting in deep affine networks. In addition to translation, the affine group includes
rotation, scaling and shear. The affine group of the two-dimensional plane is six-dimensional (i.e.,
an affine transformation can be represented by a point in 6D affine space). The key challenge with

1

extending convnets to affine spaces is that it is intractable to explicitly represent and compute with
a high-dimensional feature map. We address this by approximating the map using kernel functions,
which not only interpolate but also control pooling in the feature maps. Compared to convnets,
this architecture substantially reduces sample complexity on image datasets involving 2D and 3D
transformations.

We share with other researchers the hypothesis that explanatory factors cannot be disentangled un-
less they are represented in an appropriate symmetry space [4, 11]. Our adaptation of a repre-
sentation to work in symmetry space is similar in some respects to the use of tangent distance in
nearest-neighbor classifiers [22]. Symnets, however, are deep networks that compute features in
symmetry space at every level. Whereas the tangent distance approximation is only locally accurate,
symnet feature maps can represent large displacements in symmetry space. There are other deep
networks that reinterpret the invariance of convolutional networks. Scattering networks [6] are cas-
cades of wavelet decompositions designed to be invariant to particular Lie groups, where translation
and rotation invariance have been demonstrated so far. The M-theory of Anselmi et al. [2] con-
structs features invariant to a symmetry group by using statistics of dot products with group orbits.
We differ from these networks in that we model multiple symmetries jointly in each layer, we do not
completely pool out a symmetry, and we discriminatively train our entire architecture. The first two
differences are important because objects and their subparts may have relative flexibility but not total
invariance along certain dimensions of symmetry space. For example, a leg of a person can be seen
in some but not all combinations of rotation and scale relative to the torso. Without discriminative
training, scattering networks and M-theory are limited to representing features whose invariances
may be inappropriate for a target concept because they are fixed ahead of time, either by the wavelet
hierarchy of the former or unsupervised training of the latter. The discriminative training of symnets
yields features with task-oriented invariance to their sub-features. In the context of digit recognition
this might mean learning the concept of a ‘0’ with more rotation invariance than a ‘6’, which would
incur loss if it had positive weights in the region of symmetry space where a ‘9’ would also fire.

Much of the vision literature is devoted to features that reduce or remove the effects of certain sym-
metry groups, e.g., [18, 17]. Each feature by itself is not discriminative for object recognition, so
structure is modeled separately, usually with a representation that does not generalize to novel view-
points (e.g., bags-of-features) or with a rigid alignment algorithm that cannot represent uncertainty
over geometry (e.g. [9, 19]). Compared to symnets, these features are not learned, have invariance
limited to a small set of symmetries, and destroy information that could be used to model object
sub-structure. Like deformable part models [10], symnets can model and penalize relative transfor-
mations that compose up the hierarchy, but can also capture additional symmetries.

Symmetry group theory has made a limited number of appearances in machine learning [8]. A few
applications are discussed by Kondor [12], and they are also used in determinantal point processes
[14]. Methods for learning transformations from examples [24, 11] could potentially benefit from
being embedded in a deep symmetry network. Symmetries in graphical models [21] lead to effective
lifted probabilistic inference algorithms. Deep symmetry networks may be applicable to these and
other areas.

In this paper, we first review symmetry group theory and its relation to sample complexity. We then
describe symnets and their affine instance, and develop new methods to scale to high-dimensional
symmetry spaces. Experiments on NORB and MNIST-rot show that affine symnets can reduce by a
large factor the amount of data required to achieve a given accuracy level.

2 Symmetry Group Theory

A symmetry of an object is a transformation that leaves certain properties of that object intact [20].
A group is a set S with an operator ∗ on it with the four properties of closure, associativity, an
identity element, and an inverse element. A symmetry group is a type of group where the group
elements are functions and the operator is function composition. A simple geometric example is
the symmetry group of a square, which consists of four reflections and {0, 1, 2, 3} multiples of 90-
degree rotations. These transformations can be composed together to yield one of the original eight
symmetries. The identity element is the 0-degree rotation. Each symmetry has a corresponding
inverse element. Composition of these symmetries is associative.

2

Lie groups are continuous symmetry groups whose elements form a smooth differentiable manifold.
For example, the symmetries of a circle include reflections and rotations about the center. The affine
group is a set of transformations that preserves collinearity and parallel lines. The Euclidean group
is a subgroup of the affine group that preserves distances, and includes the set of rigid body motions
(translations and rotations) in three-dimensional space.

The elements of a symmetry group can be represented as matrices. In this form, function composi-
tion can be performed via matrix multiplication. The transformation P followed by Q (also denoted
Q ◦ P) is computed as R = QP. In this paper we treat the transformation matrix P as a point
in D-dimensional space, where D depends on the particular representation of the symmetry group
(e.g., D = 6 for affine transformations in the plane).

A generating set of a group is a subset of the group such that any group element can be expressed
through combinations of generating set elements and their inverses. For example, a generating set
of the translation symmetry group is {x → x + ε, y → y + ε} for infinitesimal ε. We define the
k-neighborhood of element f in group S under generating set G as the subset of S that can be
expressed as f composed with elements of G or their inverses at most k times. With the previous
example, the k-neighborhood of a translation vector f would take the shape of a diamond centered
at f in the xy-plane.

The orbit of an object x is the set of objects obtained by applying each element of a symmetry group
to x. Formally, a symmetry group S acting on a set of objects X defines an orbit for each x ∈ X:
Ox = {s ∗x : s ∈ S}. For example, the orbit of an image I(u) whose points are transformed by the
rotation symmetry group s ∗ I(u) = I(s−1 ∗ u) is the set of images resulting from all rotations of
that image. If two orbits share an element, they are the same orbit. In this way, a symmetry group
S partitions the set of objects into unique orbits X =

⋃
aOa. If a data distribution D(x, y) has

the property that all the elements of an orbit share the same label y, S imposes a constraint on the
hypothesis class of a learner, effectively lowering its VC-dimension and sample complexity [1].

3 Deep Symmetry Networks

Deep symmetry networks represent rich compositional structure that incorporates invariance to high-
dimensional symmetries. The ideas behind these networks are applicable to any symmetry group, be
it rigid-body transformations in 3D or permutation groups over strings. The architecture of a symnet
consists of several layers of feature maps. Like convnets, these feature maps benefit from weight
tying and pooling, and the whole network is trained with backpropagation. The maps and the filters
they apply are in the dimension D of the chosen symmetry group S.

A deep symmetry network has L layers l ∈ {1, ..., L} each with Il features and corresponding
feature maps. A feature is the dot-product of a set of weights with a corresponding set of values from
a local region of a lower layer followed by a nonlinearity. A feature map represents the application
of a filter at all points in symmetry space. A feature at point P is computed from the feature maps
of the lower layer at points in the k-neighborhood of P. As P moves in the symmetry space of a
feature map, so does its neighborhood of inputs in the lower layer. Feature map i of layer l is denoted
M [l, i] : RD → R, a scalar function of the D-dimensional symmetry space. Given a generating set
G ⊂ S, the points in the k-neighborhood of the identity element are stored in an array T[]. Each
filter i of layer l defines a weight vector w[l, i, j] for each point T[j] in the k-neighborhood. The
vector w[l, i, j] is the size of Il−1, the number of features in the underlying layer. For example, a
feature in an affine symnet that detects a person would have positive weight for an arm sub-feature in
the region of the k-neighborhood that would transform the arm relative to the person (e.g., smaller,
rotated, and translated relative to the torso). The value of feature map i in layer l at point P is
the dot-product of weights and underlying feature values in the neighborhood of P followed by a
nonlinearity:

M [l, i](P) = σ (v(P, l, i)) (1)

v(P, l, i) =
∑|T|

j w[l, i, j] · x(P ◦T[j]) (2)

x(P′) =

〈
S(M [l − 1, 0])(P′)

. . .
S(M [l − 1, Il−1])(P′)

〉
(3)

3

Layer l
Feature map i

Layer l-1
Feature maps 0,1,2

Layer l-1
Pooled feature maps 0,1,2

Kernels

Figure 1: The evaluation of point P in map M [l, i]. The elements of the k-neighborhood of P are
computed P ◦ T[j]. Each point in the neighborhood is evaluated in the pooled feature maps of the
lower layer l− 1. The pooled maps are computed with kernels on the underlying feature maps. The
dashed line intersects the points in the pooled map whose values form x(P ◦T[j]) in Equation 3; it
also intersects the contours of kernels used to compute those pooled values. The value of the feature
is the sum of the dot-products w[l, i, j] · x(P ◦T[j]) over all j, followed by a nonlinearity.

where σ is the nonlinearity (e.g., tanh(x) or max(x, 0)), v(P, l, i) is the dot product, P ◦T[j] rep-
resents element j in the k-neighborhood of P, and x(P′) is the vector of values from the underlying
pooled maps at point P′. This definition is a generalization of feature maps in convnets1. Similarly,
the same filter weights w[l, i, j] are tied across all points P in feature map M [l, i]. The evaluation
of a point in a feature map is visualized in Figure 1.

Feature maps M [l, i] are pooled via kernel convolution to become S(M [l, i]). In the case of
sum-pooling, S(M [l, i])(P) =

∫
M [l, i](P − Q)K(Q) dQ; for max-pooling, S(M [l, i])(P) =

maxQM [l, i](P−Q)K(Q). The kernel K(Q) is also a scalar function of the D-dimensional sym-
metry space. In the previous example of a person feature, the arm feature map could be pooled over
a wide range of rotations but narrow range of translations and scales so that the person feature allows
for moveable but not unrealistic arms. Each filter can specify the kernels it uses to pool lower layers,
but for the sake of brevity and analogy to convnets we assume that the feature maps of a layer are
pooled by the same kernel. Note that convnets discretize these operations, subsample the pooled
map, and use a uniform kernel K(Q) = 1{‖Q‖∞ < r}.
As with convnets, the values of points in a symnet feature map are used by higher symnet layers,
layers of fully connected hidden units, and ultimately softmax classification. Hidden units take the
familiar form o = σ(Wx + b), with input x, output o, weight matrix W, and bias b. The log-loss
of the softmax L on an instance is −wi · x − bi + log (

∑
c exp (wc · x + bc)), where Y = i is

the true label, wc and bc are the weight vector and bias for class c, and the summation is over the
classes. The input image is treated as a feature map (or maps, if color or stereo) with values in the
translation symmetry space.

Deep symmetry networks are trained with backpropagation and are amenable to the same best prac-
tices as convnets. Though feature maps are defined as continuous, in practice the maps and their
gradients are evaluated on a finite set of points P ∈M [l, i]. We provide the partial derivative of the
loss L with respect to a weight vector.

∂L
∂w[l, i, j]

=
∑

P∈M [l,i]
∂L

∂M [l,i](P)
∂M [l,i](P)
∂w[l,i,j]

(4)

∂M [l, i](P)

∂w[l, i, j]
= σ′ (v(P, l, i))x(P ◦T[j]) (5)

1The neighborhood that defines a square filter in convnets is the reference point translated by up to k times
in x and k times in y.

4

A
B1B2C2

B3

C3

B4

C4

B5

C1

A B1

B2

C2

B3

C3

B4

C4

B5

C1

A

B1
B2
B3
B4
B5

C1
C2
C3
C4

A
B1B2C2

B3

C3

B4

C4

B5

C1
B1

C1

B1

C1A

B1
B2
B3
B4
B5

C1
C2
C3
C4

Figure 2: The feature hierarchy of a three-layer deep affine net is visualized with and without
pooling. From top to bottom, the layers (A,B,C) contain one, five, and four feature maps, each cor-
responding to a labeled part of the cartoon figure. Each horizontal line represents a six-dimensional
affine feature map, and bold circles denote six-dimensional points in the map. The dashed lines
represent the affine transformation from a feature to the location of one of its filter points. For clar-
ity, only a subset of filter points are shown. Left: Without pooling, the hierarchy represents a rigid
affine transformation among all maps. Another point on feature map A is visualized in grey. Right:
Feature maps B1 and C1 are pooled with a kernel that gives those features flexibility in rotation.

The partial derivative of the loss L with respect to the value of a point in a lower layer is

∂L
∂M [l − 1, i](P)

=
∑Il

i′
∑

P′∈M [l,i′]
∂L

∂M [l,i′](P′)
∂M [l,i′](P′)
∂M [l−1,i](P)

(6)

∂M [l, i′](P′)

∂M [l − 1, i](P)
= σ′ (v(P′, l, i′))

∑|T|
j w[l, i′, j][i] ∂S(M [l−1,i])(P′◦T[j])

∂M [l−1,i](P)
(7)

where the gradient of the pooled feature map ∂S(M [l,i])(P)
∂M [l,i](Q) equals K(P−Q) for sum-pooling.

None of this treatment depends explicitly on the dimensionality of the space except for the kernel
and transformation composition which have polynomial dependence on D. In the next section we
apply this architecture to the affine group in 2D, but it could also be applied to the affine group in
3D or any other symmetry group.

4 Deep Affine Networks

−1 0 1

−1

0

1

Figure 3: The six transformations in the gener-
ating set of the affine group applied to a square
(exaggerated ε=0.2, identity is black square).

We instantiate a deep symmetry network with the
affine symmetry group in the plane. The affine
symmetry group contains transformations capa-
ble of rotating, scaling, shearing, and translating
two-dimensional points. The transformation is de-
scribed by six coordinates:[

x′

y′

]
=

[
a b
c d

] [
x
y

]
+

[
e
f

]
This means that each of the feature maps M [l, i]
and elements T[j] of the k-neighborhood is repre-
sented in six dimensions. The identity transforma-
tion is a=d=1, b= c=e=f =0. The generating
set of the affine symmetry group contains six el-
ements, each of which is obtained by adding ε to
one of the six coordinates in the identity transform.
This generating set is visualized in Figure 3.

A deep affine network can represent a rich part hierarchy where each weight of a feature modulates
the response to a subpart at a point in the affine neighborhood. The geometry of a deep affine network
is best understood by tracing a point on a feature map through its filter point transforms into lower
layers. Figure 2 visualizes this structure without and with pooling on the left and right sides of
the diagram, respectively. Without pooling, the feature hierarchy defines a rigid affine relationship
between the point of evaluation on a map and the location of its sub-features. In contrast, a pooled
value on a sub-feature map is computed from a neighborhood defined by the kernel of points in
affine space; this can represent model flexibility along certain dimensions of affine space.

5

5 Scaling to High-Dimensional Symmetry Spaces
It would be intractable to explicitly represent the high-dimensional feature maps of symnets. Even a
subsampled grid becomes unwieldy at modest dimensions (e.g., a grid in affine space with ten steps
per axis has 106 points). Instead, each feature map is evaluated at N control points. The control
points are local maxima of the feature in symmetry space, found by Gauss-Newton optimization,
each initialized from a prior. This can be seen as a form of non-maximum suppression. Since the
goal is recognition, there is no need to approximate the many points in symmetry space where the
feature is not present. The map is then interpolated with kernel functions; the shape of the function
also controls pooling.

5.1 Transformation Optimization
Convnets max-pool a neighborhood of translation space by exhaustive evaluation of feature loca-
tions. There are a number of algorithms that solve for a maximal feature location in symmetry space
but they are not efficient when the feature weights are frequently adjusted [9, 19]. We adopt an
iterative approach that dovetails with the definition of our features.

If a symnet is based on a Lie group, gradient based optimization can be used to find a point P∗
that locally maximizes the feature value (Equation 1) initialized at point P. In our experiments
with deep affine nets, we follow the forward compositional (FC) warp [3] to align filters with the
image. An extension of Lucas-Kanade, FC solves for an image alignment. We adapt this procedure
to our filters and weight vectors: min∆P

∑|T|
j ‖w[l, i, j]− x(P ◦∆P ◦T[j])‖2. We run an FC

alignment for each of the N control points in feature map M [l, i], each initialized from a prior.
Assuming

∑|T|
j ‖x(P ◦∆P ◦T[j])‖2 is constant, this procedure locally maximizes the dot product

between the filter and the map in Equation 2. Each iteration of FC takes a Gauss-Newton step to
solve for a transformation of the neighborhood of the feature in the underlying map ∆P, which is
then composed with the control point: P← P ◦∆P.

5.2 Kernels

Figure 4: Contours of three 6D Gaus-
sian kernels visualized on a surface
in affine space. Points are visualized
by an oriented square transformed by
the affine transformation at that point.
Each kernel has a different covariance
matrix Σ.

Given a set of N local optima O∗ =
{(P1, v1), . . . , (PN , vN)} in D-dimensional feature
map M [l, i], we use kernel-based interpolation to compute
a pooled map S(M [l, i]). The kernel performs three
functions: penalizing relative locations of sub-features
in symmetry space (cf. [10]), interpolating the map, and
pooling a region of the map. These roles could be split
into separate filter-specific kernels that are then convolved
appropriately. The choice of these kernels will vary
with the application. In our experiments, we lump these
functions into a single kernel for a layer. We use a Gaussian
kernel K(Q) = e−q

T Σ−1q where q is the D-dimensional
vector representation of Q and the D×D covariance matrix
Σ controls the shape and extent of the kernel. Several
instances of this kernel are shown in Figure 4. Max-pooling
produced the best results on our tests.

6 Experiments
In our experiments we test the hypothesis that a deep network with access to a larger symmetry group
will generalize better from fewer examples, provided those symmetries are present in the data. In
particular, theory suggests that a symnet will have better sample complexity than another classifier
on a dataset if it is based on a symmetry group that generates variations present in that dataset [1].
We compare deep affine symnets to convnets on the MNIST-rot and NORB image classification
datasets, which finely sample their respective symmetry spaces such that learning curves measure
the amount of augmentation that would be required to achieve similar performance. On both datasets
affine symnets achieve a substantial reduction in sample complexity. This is particularly remarkable
on NORB because its images are generated by a symmetry space in 3D. Symnet running time was
within an order of magnitude of convnets, and could be greatly optimized.

6.1 MNIST-rot
MNIST-rot [15] consists of 28x28 pixel greyscale images: 104 for training, 2 × 103 for validation,
and 5× 104 for testing. The images are sampled from the MNIST digit recognition dataset and each

6

Figure 5: Impact of training set size on MNIST-rot test performance for architectures that use either
one convolutional layer or one affine symnet layer.

is rotated by a random angle in the uniform distribution [0, 2π]. With transformations that apply
to the whole image, MNIST-rot is a good testbed for comparing the performance of a single affine
layer to a single convnet layer.

We modified the Theano [5] implementation of convolutional networks so that the network consisted
of a single layer of convolution and maxpooling followed by a hidden layer of 500 units and then
softmax classification. The affine net layer was directly substituted for the convolutional layer. The
control points of the affine net were initialized at uniformly random positions with rotations oriented
around the image center, and each control point was locally optimized with four iterations of Gauss-
Newton updates. The filter points of the affine net were arranged in a square grid. Both the affine
net and the convnet compute a dot-product and use the sigmoid nonlinearity. Both networks were
trained with 50 epochs of mini-batch gradient descent with momentum, and test results are reported
on the network with lowest error on the validation set2. The convnet did best with small 5 × 5
filters and the symnet with large 20 × 20 filters. This is not surprising because the convnet must
approximate the large rotations of the dataset with translations of small patches. The affine net can
pool directly in this space of rotations with large filters.

Learning curves for the two networks are presented in Figure 5. We observe that the affine symnet
roughly halves the error of the convnet. With small sample sizes, the symnet achieves an accuracy
for which the convnet requires about eight times as many samples.

6.2 NORB
MNIST-rot is a synthetic dataset with symmetries that are not necessarily representative of real
images. The NORB dataset [16] contains 2× 108× 108 pixel stereoscopic images of 50 toys in five
categories: quadrupeds, human figures, airplanes, trucks, and cars. Five of the ten instances of each
category are reserved for the test set. Each toy is photographed on a turntable from an exhaustive
set of angles and lighting conditions. Each image is then perturbed by a random translation shift,
planar rotation, luminance change, contrast change, scaling, distractor object, and natural image
background. A sixth blank category containing just the distractor and background is also used. As
in other papers, we downsample the images to 2×48×48. To compensate for the effect of distractors
in smaller training sets, we also train and test on a version of the dataset that is centrally-cropped to
2× 24× 24. We report results for whichever version had lower validation error. In our experiments
we train on a variable subset of the first training fold, using the first 2 × 103 images of the second
fold for validation. Our results use both of the testing folds.

We compare architectures that use two convolutional layers or two affine ones, which performed
better than single-layer ones. As with the MNIST-rot experiments, the symnet and convnet layers
are followed by a layer of 500 hidden units and softmax classification. The symnet control points in
the first layer were arranged in three concentric rings in translation space, with 8 points spaced across
rotation (200 total points). Control points in the second layer were fixed at the center of translation

2Grid search over learning rate {.1, .2}, mini-batch size {10, 50, 100}, filter size {5, 10, 15, 20, 25}, num-
ber of filters {20, 50, 80}, pooling size (convnet) {2, 3, 4}, and number of control points (symnet) {5, 10, 20}.

7

Figure 6: Impact of training set size on NORB test performance for architectures with two convolu-
tional or affine symnet layers followed by a fully connected layer and then softmax classification.

space arranged over 8 rotations and up to 2 vertical scalings (16 total points) to approximate the
effects of elevation change. Control points were not iteratively optimized due to the small size of
object parts in downsampled images. The filter points of the first layer of the affine net were arranged
in a square grid. The second layer filter points were arranged in a circle in translation space at a 3
or 4 pixel radius, with 8 filter points evenly spaced across rotation at each translation. We report the
test results of the networks with lowest validation error on a range of hyperparameters3.

The learning curves for convnets and affine symnets are shown in Figure 6. Even though the primary
variability in NORB is due to rigid 3D transformations, we find that our affine networks still have
an advantage over convnets. A 3D rotation can be locally approximated with 2D scales, shears, and
rotations. The affine net can represent these transformations and so it benefited from larger filter
patches. The translation approximation of the convnet is unable to properly align larger features to
the true symmetries, and so it performed better with smaller filters. The convnet requires about four
times as much data to reach the accuracy of the symnet with the smallest training set. Larger filters
capture more structure than smaller ones, allowing symnets to generalize better than convnets, and
effectively giving each symnet layer the power of more than one convnet layer.

The left side of the graph may be more indicative of the types of gains symnets may have over
convnets in more realistic datasets that do not have thousands of images of identical 3D shapes.
With the ability to apply more realistic transformations to sub-parts, symnets may also be better able
to reuse substructure on datasets with many interrelated or fine-grained categories. Since symnets
are a clean generalization of convnets, they should benefit from the learning, regularization, and
efficiency techniques used by state-of-the-art networks [13].

7 Conclusion
Symmetry groups underlie the hardest challenges in computer vision. In this paper we introduced
deep symmetry networks, the first deep architecture that can compute features over any symmetry
group. It is a natural generalization of convolutional neural networks that uses kernel interpolation
and transformation optimization to address the difficulties in representing high-dimensional feature
maps. In experiments on two image datasets with 2D and 3D variability, affine symnets achieved
higher accuracy than convnets while using significantly less data.

Directions for future work include extending to other symmetry groups (e.g., lighting, 3D space),
modeling richer distortions, incorporating probabilistic inference, and scaling to larger datasets.

Acknowledgments
This research was partly funded by ARO grant W911NF-08-1-0242, ONR grants N00014-13-1-
0720 and N00014-12-1-0312, and AFRL contract FA8750-13-2-0019. The views and conclusions
contained in this document are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of ARO, ONR, AFRL, or the United
States Government.

3Grid search over filter size in each layer {6, 9}, pooling size in each layer (convnet) {2, 3, 4}, first layer
control point translation spacing (symnet) {2, 3}, momentum {0, 0.5, 0.9}, others as in MNIST-rot.

8

References
[1] Y. S. Abu-Mostafa. Hints and the VC dimension. Neural Computation, 5(2):278–288, 1993.

[2] F. Anselmi, J. Z. Leibo, L. Rosasco, J. Mutch, A. Tacchetti, and T. Poggio. Unsupervised learning of
invariant representations in hierarchical architectures. ArXiv preprint 1311.4158, 2013.

[3] S. Baker and I. Matthews. Lucas-Kanade 20 years on: A unifying framework. International Journal of
Computer Vision, 56(3):221–255, 2004.

[4] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–1828, 2013.

[5] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley,
and Y. Bengio. Theano: a CPU and GPU math expression compiler. In Proceedings of the Python for
Scientific Computing Conference, 2010.

[6] J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35(8):1872–1886, 2013.

[7] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classification.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2012.

[8] P. Diaconis. Group representations in probability and statistics. Institute of Mathematical Statistics, 1988.

[9] B. Drost, M. Ulrich, N. Navab, and S. Ilic. Model globally, match locally: Efficient and robust 3D object
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2010.

[10] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, multiscale, deformable part
model. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2008.

[11] G. E. Hinton, A. Krizhevsky, and S. D. Wang. Transforming auto-encoders. In Proceedings of the Twenty-
First International Conference on Artificial Neural Networks, 2011.

[12] I. R. Kondor. Group theoretical methods in machine learning. Columbia University, 2008.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural
networks. In Advances in Neural Information Processing Systems 25, 2012.

[14] A. Kulesza and B. Taskar. Determinantal point processes for machine learning. ArXiv preprint 1207.6083,
2012.

[15] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical evaluation of deep archi-
tectures on problems with many factors of variation. In Proceedings of the Twenty-Fourth International
Conference on Machine Learning, 2007.

[16] Y. LeCun, F. J. Huang, and L. Bottou. Learning methods for generic object recognition with invariance to
pose and lighting. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2004.

[17] T. Lee and S. Soatto. Video-based descriptors for object recognition. Image and Vision Computing,
29(10):639–652, 2011.

[18] D. G. Lowe. Object recognition from local scale-invariant features. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 1999.

[19] F. Lu and E. Milios. Robot pose estimation in unknown environments by matching 2D range scans.
Journal of Intelligent and Robotic Systems, 18(3):249–275, 1997.

[20] W. Miller. Symmetry groups and their applications. Academic Press, 1972.

[21] M. Niepert. Markov chains on orbits of permutation groups. In Proceedings of the Twenty-Eight Confer-
ence on Uncertainty in Artificial Intelligence, 2012.

[22] P. Simard, Y. LeCun, and J. S. Denker. Efficient pattern recognition using a new transformation distance.
In Advances in Neural Information Processing Systems 5, 1992.

[23] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing
properties of neural networks. International Conference on Learning Representations, 2014.

[24] L. Wiskott and T. J. Sejnowski. Slow feature analysis: Unsupervised learning of invariances. Neural
Computation, 14(4):715–770, 2002.

9

	Introduction
	Symmetry Group Theory
	Deep Symmetry Networks
	Deep Affine Networks
	Scaling to High-Dimensional Symmetry Spaces
	Transformation Optimization
	Kernels

	Experiments
	MNIST-rot
	NORB

	Conclusion

