
Competitive Learning for Deep Temporal Networks

Robert Gens
Computer Science and Engineering

University of Washington
Seattle, WA 98195

rcg@cs.washington.edu

Pedro Domingos
Computer Science and Engineering

University of Washington
Seattle, WA 98195

pedrod@cs.washington.edu

Abstract

We propose the use of competitive learning in deep networks for understanding
sequential data. Hierarchies of competitive learning algorithms have been found
in the brain [1] and their use in deep vision networks has been validated [2]. The
algorithm is simple to comprehend and yet provides fast, sparse learning. To un-
derstand temporal patterns we use the depth of the network and delay blocks to
encode time. The delayed feedback from higher layers provides meaningful pre-
dictions to lower layers. We evaluate a multi-factor network design by using it to
predict frames in movies it has never seen before. At this task our system outper-
forms the prediction of the Recurrent Temporal Restricted Boltzmann Machine
[3] on novel frame changes.

1 Introduction

Deep networks can encode complex functions in less space than shallow functional equivalents [4].
The two most popular ways to build a deep network are Restricted Boltzmann Machines and Auto-
encoders. Both of these ideas date back to investigations into neural learning in the 1980’s [5].
Competitive Learning was also proposed at this time, but it has not received very much attention in
contemporary neural networks [6]. However, there may be good reason to consider their use. Recent
research has found competitive learning algorithms in critical information processing regions of the
brain [1]. There is also some evidence that these algorithms could be responsible for learning the
major building blocks of the fast feedforward visual pathways in primates [2]. This validation of
competitive learning as building block of brain networks makes it a promising candidate for deep
networks research.

We expand upon the work of competitive learning by creating a large heterogeneous hierarchy to
understand video. Much like the visual cortex we divide our architecture into a motion subnetwork
and a shape subnetwork [7]. Our network is different from those of Serre et al. [8] and Jhuang et
al. [9] in that we incorporate both shape and motion into one network and learn weights for both
subnetworks at the same time. We seek to design a network that will allow competitive learning
units to make predictions. By identifying the key factors that make up the input in our subnetworks,
we can then learn how these factors combine to predict the current state. This will require that our
network represents time.

The recent Recurrent Temporal RBM and Temporal RBM show the importance of delayed signals
and hidden-to-hidden connections in networks that process sequential information [3, 10]. As we
stack layers in a deep network, we might want to make use of the depth of the network to encode
time, so we will explore the use of feedback to make predictions. That is, a unit in a higher layer
with a larger receptive field may be able to prime a lower unit for a future stimulus.

In this paper we develop a framework with which we can connect multiple layers of competitive
learning units in multiple subnetworks. We then create a vision network composed of shape and

1



motion sections with delayed signals and feedback. Finally we test our network against natural
video and synthetic motion. Our results show that this is a promising approach to deep temporal
networks.

The architecture of our system provides insight into designing networks that process other sequential
data such as speech. The analogs to shape and motion for auditory processing are timbre and melody.
A subnetwork that recognizes combinations of static pitches communicating with a subnetwork
that measures changes in pitch would be able to anticipate phonemes as they are spoken. On a
higher level, both visual and auditory processing are require a hierarchical grammar, which could
be achieved with a mixture of clustering, delays, and sequence hashing [1]. The top-down feedback
mechanism we demonstrate may be useful for other predictive systems that operate on hierarchical
data.

2 Competitive Learning Network for Video

We propose a heterogenous deep architecture that can encode time through depth and delayed con-
nections. In traditional neural network architectures we rely on the learning to discover the factors
of the input. We are inspired by the organization in the brain to divide our network into two prede-
termined pathways: shape and motion. We use competitive learning units to simplify the nodes of
the network so we can investigate different architectures. By establishing this division we can not
only design subnetworks that best accommodate their functions but also allow devise the ways in
which subnetworks communicate with each other.

2.1 Competitive learning units

The basic learning unit we use is the prototypical competitive learner from [6]. A unit receives a
fixed number of ni inputs (vector ~i) and over time learns a fixed number of nj clusters of those
inputs. The dimension of each cluster matches that of the inputs. At each learning step, the inputs
are compared with each cluster using a dot product. The cluster that best matches the input ’wins’
(see Figure 1) and is altered so that it better resembles the input.

Clusters 

! 

w1

! 

w2

! 

w3

! 

w4

! 

w5

! 

w6

Input 

! 

i

Output 

! 

i" w1, i" w2, i" w3, i" w4, i" w5, i" w6

0 1 1 11 3 
Winner! 

Figure 1: This diagrams the process of competitive learning in a single unit. There are nj = 6
clusters and the input~i is a 3x3 binary vector. For each round of learning the input is compared with
every cluster using a dot product. The cluster with the largest product wins the round and its weights
are changed according to the equation below. The output of a competitive learning unit is a vector
composed of the products for each cluster (shown in colored boxes).

The change in the weights of a cluster is

∆wij =
{

0 if cluster j loses
α cik

‖ ~i‖ − αwij if cluster j wins

where wij is the weight connecting input i to cluster j, α is the learning rate, and cik is value of
input i in example k. We normalize the weights by the magnitude of the input vector as opposed to

2



the number of inputs as in the original algorithm. Though only one cluster in a unit can ’win’ at a
time, the output of the unit is a dimension-J vector composed of the dot product of the input with
each of nj clusters

~o = 〈~i· ~w1,~i· ~w2, ...,~i· ~wnj
〉

where ~wj is the vector of weights for all ni inputs in cluster j. We sample the initial weights from
a uniform distribution on the unit interval (0, 1). If a competitive learning unit receives input from
another unit, it is the entire output vector that is incorporated into the unit’s inputs for learning. Over
a relatively small number of training examples proportionate to the learning rate and the number of
clusters, the competitive learning unit learns a sparse alphabet of symbols that regularly occur in the
input. We use this functionality to learn in both the shape and motion subnetworks. In the former
case, the unit learns a set of oriented edges in space. In the later, it learns edges in space-time. Time
is incorporated using delay blocks.

2.2 Delay blocks

In order to measure changes over time, we simulate the signal delays found in biological neural
networks. A delay block receives only one signal x and outputs the d most recent values of that
signal. Thus the output of a delay block is the vector of 〈x(t), x(t−1), ..., x(t−(d−1))〉.

2.3 Network topology

We propose an initial design for a low-level multi-factor vision network in Figure 2. The shape
and motion subnetworks are each comprised of k layers. Lower layers within a subnetwork feed
to higher layers. The image from the video only feeds directly to the lowest shape units. Motion
units take their input from delay blocks of the maximum activation of a small neighborhood of shape
units. For example, a motion unit that looks at a 2x2 grid of delayed (assume d = 3) shape units
at the current time t will receive three versions of the maximum element of the output vector from
each of the four shape units, one for each of {t, t−1, t−2}.
In a two-layer network, the output vector of a second layer motion unit becomes part of the input to
a first layer shape unit. This feedback is delayed by a single time step. The input vector of a layer
one shape unit that watches n pixels r1...rn at time t is

~iS1(t) = 〈r1(t), ..., rn(t), oM2(t−1, 1), ..., oM2(t−1, nj)〉

where oM2(t−1, j) refers to the j-th element of the output vector of a layer two motion unit with
nj clusters at time t− 1. Using this notation the input to a layer one motion unit at time t is

~iM1(t) = 〈oS1(t, j′), oS1(t−1, j′), oS1(t−2, j′), ...〉

where j′ denotes the winning cluster at that time and the trailing ellipsis signifies that the unit can
receive from multiple S1 units. This shows that this motion unit receives three copies of the winning
output of each shape unit in its receptive field for a delay block of d = 3. The input to a second layer
shape unit is

~iS2(t) = 〈oS1(t, 1), ..., oS1(t, nj), ...〉

where S1 is one of the layer one shape units that provides input. The layer two motion unit receives
input the output vectors from layer one motion units as well as the delayed winning outputs of layer
two shape units:

~iM2(t) = 〈oM1(t, 1), ..., oM1(t, nj), ..., oS2(t, j′), oS2(t−1, j′), oS2(t−2, j′)...〉

3



!"#

$"#

Motion Shape 

!"

!%#

$%#

!"

!"

&'()*++,*#-*./0102#-.3*/#

4*-.3#5-'67#

8.3*/#6'00*6+'0#

Figure 2: A two-layer network for watching video consisting of two subsections: motion and shape.
The delayed outputs of shape layers are fed to motion layers. With this design we test the ability of
the second motion layer to help make predictions in the first shape layer.

2.4 Generating a frame

We visualize the activity of our network by projecting the weights of the winning cluster back to
the lower units that provide the corresponding input. Units that feed to multiple higher units take
an average of the back projected signals. The lowest shape layer votes on values of the pixels of
the patch it receives as input, but we multiply the weights by a constant q to roughly scale from
their normalized values. The backwards signals of this frame generation are not part of the learning
process. The predicted value of a pixel is

p(x, y) =

∑
s1(x,y) qwj′xy

ns1

where s1(x,y) is the set of all units in the first shape layer that connect directly to pixel (x, y), ns1

is the size of this set of first layer shape units, and wj′xy is the weight connecting pixel (x, y) to the
winning cluster j′ for a given unit.

3 Experiments

3.1 Topographic layout

The size of each layer and the inputs of any unit in that layer are detailed in Table 1 and illustrated
in Figure 3. This is by no means an optimal design, but we chose it because it performed better at
prediction tasks than other preliminary network designs. For our experiments we set the number of
layers k = 2.

Table 1: Size and quantity of units in the vision network

Layer Quantity Inputs Receptive Field Total Weights

S1 36 2x2 video image, at least one M2 2x2 40,320
S2 9 2x2 S1 4x4 20,736
M1 9 2x2 S1 (delayed) 4x4 82,944
M2 4 2x2 S2 (delayed), 2x2 M1 8x8 46,080

Total: 190,080

4



12x12 Video Patch 

6x6 Shape-1 

3x3 Shape-2 

2x2 Motion-2 

3x3 Motion-1 

!"

!"

Figure 3: This diagram traces the connections from four pixels on the video up to the second motion
layer. The feedback from the second layer of motion is shown to provide input to a 4x4 region of the
units in the first shape layer. These regions overlap by two pixels, so some units in this layer receive
feedback from one, two, or four second layer units.

3.2 Comparing with RTRBM

The RTRBM system we test against is composed of a visible and a hidden layer with corresponding
weight matrices for visible-to-hidden (WV H ) and hidden-to-hidden (WHH ) connections. These
matrices are learned at every time step using Contrastive Divergence[11]. In the future we would like
to test our approach against the multi-layer Temporal Restricted Boltzmann Machines produced by
the same authors [10]. For the purposes of this workshop we used the RTRBM because it produces
more realistic samples than the TRBM.

For comparison purposes we set the number of hidden units in the RTRBM so that the total number
of weights in each network are approximately equal. We calculate the size of each layer of our vision
network in in Table 1. An RTRBM with 122 visible nodes (defined by experiment) and 370 hidden
nodes has slightly more weights than our network.1

3.3 Prediction in natural video

We used two popular off-the-shelf movies2 to train and test for this task. Only one movie was used
for learning each network, and the other movie was used to test prediction. For every frame of the
movie, the pixels3 of a 12x12 region were fed to the visible units of the RTRBM or the lowest layer
of our network. The same region of pixels was shown to both networks. A small patch of the video
will suffer the most from the aperture problem and we would like to test our prediction with this
challenge

In the factored network, each unit in a layer would competitively learn4 from its input. Learning the
RTRBM was performed as described in [3], but the network was made to watch the movie only once
in sequence as opposed to redundant random subsequences.

To test prediction, we disabled the learning mechanism and had each network watch the second
movie. Every 100 frames, however, we would sever the connection from the visible units. Upon

1122 ∗ 370 + 3702 = 190, 180 ≈ 190, 080
2Lost in Translation (2003) for training and The Ten Commandments (1956) for testing
3The value of a pixel ranges from 0 to 1 in 256 steps.
4In our experiments we set d = 4, α = .005, q = .1, and nj = 24 .

5



watching this blank frame, we asked both networks to generate the current frame of the movie based
on its internal state. It is trivial to sample the visible nodes in the RTRBM given the state of the
hidden nodes and the learned visible-to-hidden connections: V = WV H ·H .

Reconstructing the video frame from the higher levels of the competitive network is described above
in section 2.4. Before calculating the error, we subtracted the mean from both the predicted and ac-
tual frame. We summed the squares of the differences between corresponding pixels in the predicted
and actual frames. This test was performed 1,000 times, spanning the first 100,000 frames (roughly
an hour) of the testing movie.

0	
  

20	
  

40	
  

60	
  

80	
  

100	
  

120	
  

To
ta
l	
  e
rr
or
	
  

Naïve	
   RTRBM	
   Our	
  method	
  

Figure 4: Total error for each method on the top 5% of frames by size of change in the video.

We also measured the squared error of the naive prediction that the missing frame would be the
same as the previous frame. For any of the 1,000 trial frames the probability that the frame changes
significantly from the one before is very low. For frames where there is a large change, our method
does better than the RTRBM and naive predictors as shown in Figure 4. The majority of frames have
little change, and for these both our system and the RTRBM perform worse than the naive predictor.
Our network performs this way because there is no motion signal to guide the prediction; it could
be fixed with recurrent links on the lowest shape layer.

This outcome of this experiment shows that our network makes better predictions than the naive and
RTRBM approaches when there is movement. This should not be a surprise considering the network
design.

3.4 Prediction of oriented moving gratings

We created synthetic video to test the ability of the network to predict successive frames with an
exhaustive set of motions. We used an oriented cosine pattern generated by the equations

val = cos(
x ∗ cos(θ) + y ∗ sin(θ)

s
+ t+ r)

θ = 2π
current angle

number of angles
s = 2πS

t = 2π
frame number

T

where (x, y) are the coordinates in the 12x12 patch, S is the wavelength in pixels, T is the temporal
period in frames, and r is the offset. The network learned from the same movie as in the previous
section. For testing purposes we disable learning and show the network eighteen frames of the
synthetic motion but omit the last frame. We then compare the internal state of units in the network

6



0	
  

5	
  

10	
  

15	
  

20	
  

25	
  

30	
  

35	
  

40	
  
1	
  

2	
  
3	
  

4	
  

5	
  

6	
  

7	
  

8	
  

9	
  

10	
  

11	
  

12	
  

13	
  

14	
  

15	
  

16	
  
17	
  

18	
  
19	
  

20	
  
21	
  

22	
  

23	
  

24	
  

25	
  

26	
  

27	
  

28	
  

29	
  

30	
  

31	
  

32	
  

33	
  

34	
  
35	
  

36	
  

0	
  

2	
  

4	
  

6	
  

8	
  

10	
  

12	
  

14	
  

16	
  

18	
  

20	
  
1	
  

2	
  
3	
  

4	
  

5	
  

6	
  

7	
  

8	
  

9	
  

10	
  

11	
  

12	
  

13	
  

14	
  

15	
  

16	
  
17	
  18	
  19	
  20	
  

21	
  

22	
  

23	
  

24	
  

25	
  

26	
  

27	
  

28	
  

29	
  

30	
  

31	
  

32	
  

33	
  
34	
  

35	
  

0	
  

0.05	
  

0.1	
  

0.15	
  

0.2	
  

0.25	
  
270°	
  

315°	
  

0°	
  

45°	
  

90°	
  

135°	
  

180°	
  

225°	
  

Figure 5: Left: the response of a layer two motion unit to different angles of static edges. The
different colors correspond to the clusters inside the unit. The radius is a measure of how active
each cluster was out of a total of 36 frames. Middle: the response of the same layer two motion
unit to different angles of motion. Right: the radius of this plot shows the fraction of total frames
predicted correctly (tested on different motion parameters over all offsets) for a layer one shape unit
that receives the strongest feedback from a layer two motion unit in the upper-left corner of the
frame.

at that blank frame with the state of the network had the final frame been shown. As the internal state
of the network is a deterministic process, we are able to reproduce identical sequences of internal
states given a video that is longer than the sum of linked delays. For any set of parameters (θ, S, T )
we also vary the frame at which we test prediction through the r parameter. The results of the test
for predicting a low level shape unit that receives feedback from four high level motion units are
shown in Figure 5.

4 Conclusion

We have shown that competitive learning units can be stacked into deep networks much like RBMs
and Auto-encoders to learn from input unsupervised. We motivated the division of the deep network
into functional units and tested the ability of feedback connections to aid in making predictions. The
simple learning units allowed us to effortlessly add delay blocks and feedback between layers so we
could study their effects on performance.

Competitive learning is a promising approach to deep temporal networks that we would like to
explore more completely. We would like to adapt our competitive learning network to become
generative by using model-based clustering. The are also many other factors of vision networks that
we could potentially design around, such as color, texture, and motion derivatives. Despite the quick
computation of competitive learners, our first vision network is rather small and relatively shallow;
we will work towards networks that make the most of their depth.

References

[1] R. Granger. Engines of the brain: The computational instruction set of human cognition. AI Magazine,
27(2):15, 2006.

[2] T. Masquelier, T. Serre, S. Thorpe, and T. Poggio. Learning complex cell invariance from natural videos:
A plausibility proof. Technical report, Massachusetts Institute of Technology, Cambridge, MA, 2007.

[3] I. Sutskever, G. Hinton, and G. Taylor. The Recurrent Temporal Restricted Boltzmann Machine. In NIPS,
volume 21, page 2008, 2008.

[4] Y. Bengio. Learning deep architectures for AI. Foundations & Trends in Mach. Learn., to appear, 2009.

[5] D.E. Rumelhart and J.L. McClelland. Parallel distributed processing, explotation in the microstructure of
cognition-Vol. 1: Foundations. 1987.

7



[6] D.E. Rumelhart and D. Zipser. Feature discovery by competitive learning. Cognitive Science, 9(1):75–
112, 1985.

[7] D.J. Felleman and D.C. Van Essen. Distributed hierarchical processing in the primate cerebral cortex.
Cerebral cortex, 1(1):1, 1991.

[8] T. Serre, L. Wolf, and T. Poggio. Object recognition with features inspired by visual cortex. In IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, volume 2, page 994. Citeseer,
2005.

[9] H. Jhuang, T. Serre, L. Wolf, and T. Poggio. A biologically inspired system for action recognition. In
Proc. IEEE Int. Conf. Computer Vision, volume 1, page 5. Citeseer, 2007.

[10] I. Sutskever and G.E. Hinton. Learning multilevel distributed representations for high-dimensional se-
quences. In Proceeding of the Eleventh International Conference on Artificial Intelligence and Statistics,
pages 544–551. Citeseer, 2007.

[11] G.E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation,
14(8):1771–1800, 2002.

8


